
NASA Technical Memorandum 104566, Vol. 17

SeaWiFS Technical Report Series

Stanford B. Hooker, Editor

Goddard Space Flight Center

Greenbelt, Maryland

Elaine R. Firestone, Technical Editor

General Sciences Corporation

Laurel, Maryland

Volume 17, Ocean Color in the 21st Century:
A Strategy for a 20-Year Time Series

Mark R. Abbott

Oregon State University

Corvallis, Oregon

Otis B. Brown

Robert H. Evans

Howard R. Gordon

University of Miami

Miami, Florida

Kendall L. Carder

University of South Florida

St. Petersburg, Florida

Frank E. Miiller-Karger

NASA Headquarters

Washington, DC

Wayne E. Esaias

Goddard Space Flight Center

Greenbelt, Maryland

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

1994



This publication is available from the NASA Center for AeroSpace Information,

800 Elkridge Landing Road, Linthicum Heights, MD 21090-2934, (301) 621-0390.



Abbott, Brown, Evans, Gordon, Carder, Miiller-Karger, and Esaias

ABSTRACT

Beginning with the upcoming launch of the Sea, viewing Wide Field-of-view Sensor (SeaWiFS), there should
be almost continuous measurements of ocean color for nearly 20 years if all of the presently planned national

and international missions are implemented. This data set will present a unique opportunity to understand the

coupling of physical and biological processes in the world ocean. The presence of multiple ocean color sensors will
allow the eventual development of an ocean color observing system that is both cost effective and scientifically

based. This report discusses the issues involved and makes recommendations intended to ensure the maximum
scientific return from this unique set of planned ocean color missions. An Executive Summary is included with

this document which briefly discusses the primary issues and suggested actions to be considered.

1. INTRODUCTION

The development of a 20-year time series of ocean color
measurements from satellites starting with the Sea-viewing

Wide Field-of-view Sensor (SeaWiFS), presents many sci-

entific opportunities to study long-term variability of bi-

ological processes in the upper ocean. These studies will

range from the response of the upper ocean ecosystem to

global climate change to the management of coastal zone
resources.

There axe several challenges that must be overcome
before these studies can be done. These include: cross-

calibration and validation of the different sensors which

will be launched by the National Aeronautics and Space

Administration (NASA), the National Space Development

Agency (NASDA) of Japan, and the European Space Agen-

cy (ESA); initiation of a program to ensure comprehensive,
coordinated observation and modeling plans; and consis-

tency of data processing and data access. The presence of

multiple ocean color sensors will allow the eventual devel-

opment of an ocean color observing system that is both

cost-effective and scientifically based.
This report discusses these subjects and makes recom-

mendations to ensure the maximum scientific return from

this unique set of planned ocean color missions. The Ex-

ecutive Summary (Section 2), encapsulates the primary

points made in this document. The remaining content
is an in-depth discussion of these subjects and concerns.

Some sections of the Executive Summary recur in the main

discussion for emphasis of particular points and narrative

clarity.

2. EXECUTIVE SUMMARY

Over the past decade, the following scientific objectives
have been developed for using ocean color measurements

for ocean research.

1. Improve the quantitative understanding of the ocean's

role in the global carbon cycle. Specifically, ocean color

imagery, in situ bio-optical measurements, numerical

models, and measurements from other space sensors

(for example, infrared thermometers and scatterome-

ters) will be used to:

a) improve estimates of the production and fate of par-
ticulate and dissolved organic carbon (DOC) in the

global ocean;

b) estimate the effects of phytoplankton blooms on the
exchange rates of carbon dioxide (CO2) between the

atmosphere and the upper ocean;

c) describe the evolution of the coupled biological and

physical processes in the upper mixed layer; and

d) provide the first quantitative estimates of interan-
nual to decadal changes in global ocean primary

production.

2. Improve the quantitative understanding of how light

absorption by the upper ocean affects the ocean heat

budget;

3. Improve the quantitative understanding of how phyto-

plankton blooms affect the production and air-to-sea
exchange of dimethyl sulfide (DMS) and other trace

gases that may affect cloud formation and other atmo-
spheric processes; and

4. Understand the relationship between phytoplankton

and other components of the marine ecosystem as re-
lated to fisheries, environmental stress, and resource

management.

The long-term scientific goal is to understand not only

how ocean biological processes affect the global carbon cy-
cle, but how they will change in response to changes in

physical forcing on local, regional, and global scales. An
understanding of the coupled dynamics of ocean biology,
ocean physics, and atmospheric forcing on the oceanic up-

per mixed layer is the ultimate objective.
In addition to these scientific objectives, ocean color

measurements will provide valuable information for man-

aging ocean resources. For example, Coastal Zone Color

Scanner (CZCS) data were used successfully in several fish-

ery studies for both research and operational applications.
Other applications, such as monitoring coastal water move-
ments and detection of eddies and fronts for shipping, will

also be conducted using ocean color observations.
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To meet these goals, the following observational re-
quirements must be met:

a. Two-day global coverage at 1 km resolution with

a sensor that meets the technical specifications at

least at the level of those of SeaWiFS (continuous

record) and direct read-out of Local Area Coverage

(LAC) data using off-the-shelf equipment;

b. In-water measurements to validate water-leaving ra-

diances and to evaluate regional chlorophyll a algo-
rithms and other bio-optical variables;

c. Develop coupled biological and physical numerical

models which incorporate ocean productivity and

its effects on air and sea CO2 and trace gas ex-
changes, fates of organic carbon, and ocean heat

budgets using the following inputs: satellite ocean

color imagery, in situ data, and derived products

from other satellite sensors such as wind stress, sea

surface temperature (SST), and solar insolation;

d. Acquire measurements centered near 412 nm for es-

timates of detrital carbon and improved estimates

of chlorophyll a in oceanic and coastal waters, and

at the sunlight induced fluorescence band (around
685 nm) for improved estimates of coastal chloro-

phyll a concentrations and for determining the phys-

iological state of phytoplankton (to improve esti-

mates of primary production); and

e. Space based observations with full spectral coverage

from 400 nm through the near infrared (IR), 800 nm,
to resolve accessory pigments and for refined esti-

matesof chlorophyll a, detrital carbon, and other
in-water constituents.

As ocean color observations will be made from a wide

range of sensors with different capabilities and from satel-

lites with different orbits, considerable effort will be re-

quired to merge these data sets into a consistent, quanti-
tative view of upper ocean biology. Ocean color measure-

ments will require a high level of stability and accuracy.
The desired signal is very small (usually less than 10%

of the total, satellite-sensed signal because of atmospheric

effects) as are interannual changes in biomass and produc-

tivity.

To meet the science objectives, the following capabili-

ties must be developed in addition to making ocean color
measurements:

1. The development of fully coupled ocean and at-

mosphere models that include both biological and

physical processes will require a full suite of physi-
cal measurements concurrent with measurements of

ocean biology.

2. An active program of cross-calibration between the

sensors is essential to develop a statistically ho-

mogeneous, long-term (greater than 20 years) data

record which can be used to study low-frequency
events such as the E1 Nifio Southern Oscillation

(ENSO). This program must include some overlap
period between the sensors and an active in situ

calibration and validation program.

3. Access to the data and the analogous algorithms
must be ensured.

The net result of this research will be an improved un-

derstanding of the processes that control carbon cycling
and storage in the ocean. The availability of a multi°

decade, consistent time series on ocean pigment and pri-

mary productivity will allow the scientific community to

study the role of low frequency variability in ocean biology.

For example, ENSO events occur roughly every 3-4 years
so that a 20-year time series should contain about five such

events. The impact of ENSO events should be character-

izable with a high degree of statistical robustness. More

importantly, this long time series, if properly calibrated,
will allow scientists to determine the ocean's response to

long-term climate change.
By using numerical models that assimilate observations

from satellites and in situ sensors, predictions could be

made about the interactions between atmospheric forcing
and primary productivity. However, data assimilation re-

quires that the variance (error) structure is known of both

the data sets being assimilated and the model relation-

ships. For example, the temporal and spatial variance

spectrum of light utilization parameters would be a key
component of a productivity model that relies on assim-

ilation techniques. At present, the understanding of the
time and space variability of most biological properties is

quite crude. However, such measurements are not beyond

the scope of many planned and operational global ocean-
ography programs. If the ultimate goal is the prediction

of ocean carbon cycling in response to changes in atmo-

spheric forcing, then collection of such data must begin, as
well as the development of assimilation models.

Although the focus of this discussion is on global-scale
processes, small-scale studies will also benefit from access

to ocean color observations. For example, studies of coastal
dynamics, river plumes, and fisheries have made extensive

use of lkm resolution CZCS data (Abbott and Chelton
1991). International efforts such as the Land Ocean In-

teraction in the Coastal Zone (LOICZ) program and the

Global Ocean Ecosystems dynamics (GLOBEC) program
will require high spatial resolution ocean color observa-

tions. In particular, high spectral resolution observations

will be necessary in order to distinguish the various dis-

solved and particulate components of the upper ocean in
both turbid and productive coastal waters.

2.1 Recommendations

2.1.1 Management Issues

The goal of a 20-year time series of global ocean color
observations requires an unprecedented level of coordina-

tion between US federal agencies and their international
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partners.Sensordesignandcalibrationshouldbewell-
documentedsuchthatdataprocessingcantakesensorper-
formanceintoaccount.Datasystemsmustbedesignedso
that theprocessinghistorycanbepreservedanddataand
algorithmscanbeeasilyshared.Suchcoordination,how-
ever,musttakeplaceinaneraof constrainedfinancialre-
sources.Newmethodsformanagementmustbeexplored.

1. An interagencyworkinggroupon satelliteocean
colorresearchandapplicationsshouldbe formed
bytheCommitteeonEnvironmentandNaturalRe-
sources(CENR)with representationfromall inter-
estedUSagencies.A charterforthisworkinggroup
shouldincludebothUSandforeignmissions.It
shouldserveasthefocalpointfor foreigncollab-
oration.Thisgroupmustalsoconsidertheneces-
sarymodelingactivitiesandphysicalobservations
neededto analyzeandinterpretoceancolordata.

2. TheNationalAeronauticsandSpaceAdministra-
tion (NASA)shouldconvenea meetingof theap-
propriateprojectandprogrampersonnel(including
contractmanagement)alongwith representatives
of the oceancolorresearchcommunityassoonas
possibleto developanoveralloceancolorprogram.
Thisprogramshouldconsistof plansfor research,
softwaredevelopment,dataprocessinganddelivery,
funding,andmanagement.

3. SeaWiFSandtheEarthObservingSystem(EOS)-
ColoreffortsshouldbeconsideredbytheEOSData
InformationSystem(EOSDIS)astheprelaunchsys-
temcapabilitytestswhichwill facilitatethetran-
sitionfrom4km SeaWiFSdatato 1kmModerate
ResolutionImagingSpectrometer(MODIS)data.

4. The MODISOceansTeamshouldbedesignated
theEOS-ColorScienceTeam,whichwouldbeex-
pandeduponthe resultsof anEOS-ColorNASA
ResearchAnnouncement(NRA).NASAshouldne-
gotiateclearagreementswith theMODISOceans
Teamregardingdeliverablesandfunding. These
agreementsmustbecoordinatedacrossthefull set
ofoceancoloractivitiessoanefficient,realisticplan
isdeveloped.

5. NASAshouldplananEOS-ColorNRAforthe1996-
97timeframe.

6. NASAshouldencourageinvestigatorrelationships
betweenUSandforeignscientists.Thismayrequire
agreementsondatadeliveryandpolicies,in which
caseNASA,the EuropeanSpaceAgency(ESA),
and the National SpaceDevelopmentAgency
(NASDA)ofJapanshouldestablishappropriateun-
derstandingsassoonaspossible.

2.1.2 Calibration and Validation Issues

Eachoceancolorsensormustbecalibratedandanini-
tial in situ validation cruise will be required shortly after

each launch. The vicarious method developed by Gordon

and co-workers (Evans and Gordon 1994) provides a pow-

erful technique to calibrate the entire ocean color system.
An extensive calibration program is planned for the EOS

sensors; these efforts must be coordinated with the meth-
ods described in this document. The issue of international

coordination also arises in this context; extensive in situ

observations are costly, and cooperation between the vari-

ous international partners could reduce the costs for each

country.
Given that there will be periods when more than one

sensor is in orbit at any one time, maximum priority should

be given towards conducting calibration and validation
cruises to compare the sensors during these overlap peri-

ods. Collecting extensive calibration and validation mea-

surements should help develop a consistent time series of
ocean color measurements from this diverse set of sensors.

This would also ensure radiometric continuity between the

missions which, to the extent that the system algorithms

(atmospheric and bio-optical) provide accurate products,
would facilitate continuing studies of interannual variabil-

ity. Clearly, this intercalibration effort will require coop-
eration on an international level. Recommendations to

achieve these goals follow.

a. Calibration and validation cruises must take place

as soon after launch as possible in regions with ap-

propriate bio-optical properties.

b. Feasibility studies should be conducted on the use of
high-altitude, oligotrophic lakes as calibration and
validation sites.

c. Calibration and validation cruises must be located

in both northern and southern waters to investigate

thermal effects on sensor performance.

d. Calibration and validation cruises should be planned

for other bio-optical water types, but these need not

be completed during the initial period of sensor op-
eration.

e. NASA should encourage investigators to collabo-
rate with their international colleagues to develop a

global network of bio-optical moorings.

2.1.3 Data System Issues

The primary goal of a 20-year time series requires that

the data processing and distribution system be designed to

safeguard the raw data and the calibration and validation
information, to enable reprocessing, and to ensure efficient

transfer of data and algorithms to US and international

researchers. The data system cannot view itself in isolation

from contemporaneous data centers or systems that may

precede or follow it. High priority must be given towards

ensuring compatibility of these basic services. While a data
system may focus on a specific mission, e.g., SeaWiFS,

its role in the larger constellation of ocean color missions

must be retained. It must be carefully integrated into a

3
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datasystemsstrategythat ensureseaseof useof other
Earthdatasets.Particularattentionshouldbepaidto
retentionof thesensordesign,calibration,andvalidation
information.Thiswillallowfutureresearcherstoreprocess
thedatain aconsistentmanner.

• NASAmustworkto eliminateall restrictionson
accessto oceancolorobservations,consistentwith
theEOSdatapolicy. Thispolicymustapplyto
bothUSandforeignresearchers.

• Consistencyshouldbemaintainedbetweenthevar-
ioussensordatasetsastheymovefromonedata
processinganddeliverysystemto another.

• SeaWiFSandtheOceanColorTemperatureSensor
(OCTS)fromJapan,shouldserveasatestbedfor
suchexchangesbetweeninternationalpartners.Al-
thoughtheprimaryfocusmaybeattheinvestigator
level,NASAmayneedto supporteffortson data
policies,dataexchange,andsatellitedownlinks.

2.1.4 Convergence

As more nations begin ambitious programs for space

based research on the Earth system, there appears to be

considerable overlap between observing capabilities. The
distinctions between the different sensors are sometimes

subtle. With increasing budget pressures, there is substan-

tial pressure to merge these various observing capabilities.

While the scientific rationale for long-term, continuous ob-

servations of ocean processes is well in hand, the appropri-

ate sampling strategies axe not in place, in part because of

the lack of understanding of the critical processes and their
associated temporal and spatial scales. The next decade

should focus on the necessary studies to develop such an

operational observing system that can adequately resolve

these processes in order to develop sound predictions of
the coupled ocean and atmosphere system and how it will

respond to climate change. In essence, convergence should

be viewed as an opportunity to move _om purely science-

driven observations towards observations for monitoring

and predicting, which must remain firmly based on scien-

tific understanding of ocean processes. Although national

interests are often involved in the launching of satellite

remote sensors, the opportunity presented by the multiple

ocean color missions must be used to design an effective in-

ternational program. The following are recommendations

for achieving this effectiveness.

a. NASA should coordinate research activities with

the other sponsoring agencies to develop the observ-

ing and sampling requirements for an ocean color
system which will make the essential measurements

for ocean monitoring and prediction.

b. An interagency effort needs to be implemented to

define new products for the coastal zone and to col-

lect, process, and distribute the LAC data.

c. NASA must support efforts to link ocean models

with both physical and biological data and ensure

that lessons learned from both modeling and data

analysis are used in the design of ocean color ob-

serving systems.

3. OCEAN COLOR RESEARCH

3.1 Research Priorities

An ad hoc committee was formed in 1991 to report on
ocean color research in the pre-EOS and EOS eras. The

committee recommended the following scientific objectives:

1. Improve the quantitative understanding of the ocean's

role in the global carbon cycle. Specifically, ocean color

imagery, in situ bio-optical measurements, numerical

models, and measurements from other space sensors
(for example, infrared thermometers and scatterome-

ters) will be used to:

a) improve estimates of the production and fate of par-

ticulate and dissolved organic carbon (DOC) in the
global ocean;

b) estimate the effects of phytoplankton blooms on the

exchange rates of carbon dioxide (CO2) between the
atmosphere and the upper ocean;

c) describe the evolution of the coupled biological and

physical processes in the upper mixed layer; and

d) provide the first quantitative estimates of interan-

nual to decadal changes in global ocean primary
production.

2. Improve the quantitative understanding of how light
absorption by the upper ocean affects ttie ocean heat

budget;

3. Improve the quantitative understanding of how phyto-
plankton blooms affect the production and air-to-sea

exchange of dimethyl sulfide (DMS) and other trace
gases that may affect cloud formation and other atmo-

spheric processes; and

4. Understand the relationship between phytoplankton

and other components of the marine ecosystem as re-

lated to fisheries, environmental stress, and resource
management.

The long-term scientific goal is to understand not only

how ocean biological processes affect the global carbon cy-

cle, but how they will change in response to changes in
physical forcing on local, regional, and global scales. An

understanding of the coupled dynamics of ocean biology,

ocean physics, and atmospheric forcing on the oceanic up-
per mixed layer is the ultimate objective.

In addition to these scientific objectives, ocean color
measurements will provide valuable information for man-

aging ocean resources. For example, CZCS data were used

successfully in several fisheries studies for both operational

and research, e.g., Fiedler et al. 1984. Other applications,
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suchasthe monitoringof coastalwatermovementsand
detectionof eddiesandfrontsfor shipping,will alsobe
conductedusingoceancolorobservations.

3.2 Observation Plan

Beginning in 1994, there should be nearly continuous
ocean color measurements for the next 20 years. SeaWiFS

will provide the first data set, beginning in 1994 with a

planned 5-year mission. It will be followed by OCTS on
the first Advanced Earth Observation Satellite (ADEOS-

1) launched by NASDA in 1996, and by MODIS on the

first EOS morning (AM-l) platform scheduled for 1998.
A follow-on SeaWiFS-class sensor will also be launched in

1998 (EOS-Color) as will the Medium Resolution Imaging
Spectromenter (MERIS) on the Environmental Satellite

(ENVISAT) to be launched by the European Space Agency
(ESA). A second MODIS will be launched on the second
EOS (PM-1) platform in 2000. The Global Imager (GLI)
will also be launched by NASDA in 2000. After this point,

there will be two copies of MODIS in orbit at any one time

for the 15-year EOS mission.

3.2.1 Implementation Priorities

The ad hoc committee proposed several implementa-

tion priorities to accomplish the science objectives, using
the satellite missions as the basic observational framework.

These priorities are:

a) two-day global coverage at 1 km resolution with the
sensor meeting the technical specifications at least
at the level of SeaWiFS (continuous record) and di-

rect read-out of LAC data using off-the-shelf equip-

ment;

b) in-water measurements to validate water-leaving ra-
diances and to evaluate regional chlorophyll a algo-
rithms and other bio-optical variables;

c) develop coupled biological and physical numerical
models that incorporate ocean productivity and its
effects on air and sea CO2 and trace gas exchanges,

fates of organic carbon, and ocean heat budgets us-

ing as inputs: satellite ocean color imagery, in situ
data, and derived products from other satellite sen-
sors such as wind stress, SST, and solar insolation;

d) acquire measurements centered near 412 nm for es-
timates of detrital carbon and improved estimates

of chlorophyll a in oceanic and coastal waters, and

at the sunlight-induced fluorescence band (around

685 nm) for improved estimates of coastal chloro-
phyll a concentrations and for determining the phys-
iological state of phytoplankton (to improve esti-

mates of primary production); and

e) space based observations with full-spectral cover-
age from 400 nm through the near-IR (800 nm) to
resolve accessory pigments and for refined estimates

of chlorophyll a, detrital carbon, ankl other in-water
constituents.

These priorities serve well as an initial start for a re-

search plan. However, some important issues for future
missions should be addressed. First, multiple global ob-

servations at 1 km spatial resolution on a daily basis will

greatly improve scientific understanding of the role of mes-
oscale processes in the upper ocean. Given that eddy sizes

in many parts of the ocean are of the order of 10 km, the
initial Global Area Coverage (GAC) SeaWiFS spatial res-
olution of 4 km will not be adequate to resolve such fea-

tures. Coupled with cloud patterns, more frequent sam-
pling will also be necessary to resolve the temporal variabil-

ity of these features. Recent field and model studies have
shown that variability on these space and time scales plays

a critical role in the coupling of the atmosphere and the

upper ocean and in the control of biological productivity.

Second, improved sensor performance beyond SeaWiFS is
essential to detect chlorophyll a fluorescence and to charac-

terize completely the optical properties of the upper ocean,
but no planned sensor will have the necessary high spec-
tral resolution across the visible wavelengths. The original

MODIS-T (which was tiIted to minimize sun glint) sensor

met these specifications.

3.2.2 Requirements for Observations

Given nearly-continuous ocean color measurements and

the long-range goal of understanding the coupled physical
and biological system, there are several requirements for
observations. First, the development of fully coupled ocean

and atmosphere models that include both biological and

physical processes will require a full suite of physical mea-
surements concurrent with measurements of ocean biology.

Second, an active program of cross-calibration between the

sensors is essential to develop a statistically homogeneous,

long-term (greater than 20 years) data record which can
be used to study low-frequency events such as the ENSO.

This program must include some overlap period between
the sensors and an active in situ calibration and valida-

tion program. Third, the data should be processed and
archived by several groups so that access to the data and

the corresponding algorithms is ensured. These require-
ments will be challenging, given that the time series will

be comprised of measurements from several sensors from
various countries.

Although these challenges are not insurmountable,

planning must begin immediately to achieve the fundamen-

tal goal of a consistent, long-term record. Numerous ex-
amples exist, such as the Advanced Very High Resolution

Radiometer (AVHRR) and the Active Cavity Radiome-
ter Irradiance Monitor (ACRIM), where such a consistent
record could not be assembled even when similar sensors
from an individual nation were used to collect the record.

3.2.3 Field Measurements

In the context of a satellite ocean color program, field
measurements should be focused on calibration and val-

idation of the sensors, as well as algorithm development
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and validation of products. The SeaWiFS Project has de-
fined a suite of measurements and protocols that should

serve as a baseline for future field programs (Mueller and
Austin 1992). Sampling strategies should consist of both

intensive, focused cruises, and extensive, less intense mea-

surements from moorings and drifters.

Algorithm and numerical model development will take

place as part of investigator-driven field programs, rather

than as part of specific flight projects. The exception
would be new algorithms designed to take advantage of

new sensor capabilities, such as the 412 nm band for dis-

solved organic matter (DOM). In terms of numerical model
development, specific activities need to be directed towards

characterizing the spatial and temporal variability of the

critical variables of the models as well as the relationships
between processes. This characterization is essential if con-
struction of models that can assimilate satellite data is to

be realized. Although this activity is beyond the scope
of an instrument flight project, it must be conducted in

a systematic manner, and not be restricted to a few lo-
cales. Critical information must be delivered back to the

flight project to ensure instrument performance and data
product definition.

The field component of satellite missions must work

in close cooperation with existing and planned field pro-
grams, especially those with a global focus such as the Joint

Global Ocean Flux Study (JGOFS). NASA must work co-

operatively with agencies that control ship funding and
schedules to ensure that these vital field measurements are

supported. In the past, coordination between agencies re-

sponsible for satellite observations and agencies responsible
for ship observations has been difficult to achieve.

3.3 Convergence of Ocean Color Missions

As more nations begin ambitious programs for space

based research on the Earth system, there appears to be

considerable overlap between observing capabilities. The
distinctions between MODIS, MERIS, and GLI are some-

times subtle. With increasing budget pressures, there is

substantial pressure to merge these various observing ca-
pabilities. While the scientific rationale for long-term, con-

tinuous observations of ocean processes is well in hand,

the appropriate sampling strategies are not in place, in

part because of the lack of understanding of the critical

processes and their associated temporal and spatial scales.

The next decade should focus on the necessary studies to

develop such an operational observing system which can

adequately resolve these processes in order to develop good
predictions of the ocean and atmosphere system and how

it will respond to climate change. In essence, convergence
should be viewed as an opportunity to move from purely
science-driven observations towards observations for mon-

itoring and predicting, which must remain firmly based on

the scientific understanding of ocean processes. Although

national interests are often involved in the launching of

Strategy for a 20-Year Time Series

satellite remote sensors, the opportunity presented by the

multiple ocean color missions must be used to design an
effective international program.

Along with the joint scientific and calibration studies

described earlier, examination must begin of the optimal

sampling strategies for the various ocean color missions.

Although crossing times and orbital altitudes have been

established for all of the planned missions, slight changes

in these parameters can greatly affect the type of sampling
patterns that will be obtained by the full suite of ocean
color missions. These issues include:

• Does diel variability in phytoplankton fluores-

cence need to be resolved, and what is the opti-
mal set of measurements that will resolve these
time scales?

• How do morning and afternoon overpasses inter-
act with the variations in the cloud fields?

• What are the impacts of not flying a near-noon
orbit on data quality?

• How does clear-weather sampling change with
location and season?

In essence, a complete analysis of all error sources in

the observing system (including both sensor and sampling
errors) is needed in the context of the underlying biological

variability. This analysis must consider the impact of these
errors on scientific return. Close coordination between the

various agencies responsible for ocean color observations

will be required to develop an effective strategy that is

based on scientific requirements.
In addition to sampling, studies should be conducted

on the instrument characteristics required to make the

necessary observations. For example, which wavelengths

need to be measured? What signal-to-noise ratio (SNR) is
required? Although the fundamental phytoplankton pig-

ment observing requirements are understood, other vari-

ables such as pigment groups and chlorophyll a fluorescence

are only in the experimental stage. Thus, this opportunity

should be used to develop the observation requirements as
well.

3.4 Advances in Scientific Understanding

With the CZCS, it was only possible to estimate to-

tal pigment concentrations as there was insufficient spec-
tral resolution to separate chlorophyll a from its associated

degradation products. Although this approach worked rea-

sonably well, several studies have shown that the bio-opti-

cal algorithms fail in the presence of DOM, such as humic

acids, which occur in coastal waters, in river plumes, and
in the open ocean. SeaWiFS and follow-on sensors will

have channels near 412 nm to correct pigment estimates
and to estimate the concentration of colored dissolved or-

ganic matter (CDOM). Although there remain challenges

for atmospheric correction at these short wavelengths, the
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availability of these measurements may extend the range

of water types, which can be observed quantitatively from

space.
Additional wavelengths and increased sensitivity will

also permit chlorophyll a to be measured separately from

other pigments. Certainly MODIS will be able to make

this measurement and perhaps SeaWiFS. Other accessory

pigments, such as phycoerythrin, will require at least the

increased spectral resolution of MODIS and probably ad-
ditional bands between 580 nm and 610 nm. Extensive air-

borne active and passive data have provided strong evi-

dence that the phycoerythrin influence is contained within

the ocean color spectrum (Hoge and Swift 1990), but ap-

propriate wavelength bands must be provided to extract

the actual pigment concentration.

3.4.1 Identifying Pigment Groups

One of the challenges remaining in bio-optical research

is the use of full spectral measurements to separate all of

the materials suspended and dissolved in the upper ocean
and to correct for bottom reflectance in coastal waters,

e.g., Lee et al. (1992) and Carder et al. (1993a). For ex-

ample, can increased spectral resolution measurements be
used to identify pigment groups within the phytoplankton,

thus obtaining information on species composition? Can

specific degradation products be identified? What minimal
wavelength set and what concentration levels are required
to derive this information? There is evidence from labora-

tory studies and limited in situ research that this approach
can be used to characterize the bio-optical properties of the

ocean. By using inversion techniques, it is possible to de-

rive many of the bio-optical properties based on measure-

ments of the complete spectrum of water-leaving radiance

(Carder et al. 1993a and 1993b). The challenge for the

next 10 years is to collect the necessary field data that will

improve bio-optical models and strengthen the scientific

underpinnings of this approach.
Such information on pigment groups is particularly im-

portant in studies of ocean carbon cycling. The patterns
of cycling and vertical fluxes depend on the species struc-

ture of the phytoplankton community. Long-term changes

in species composition, in response to changes in atmo-

spheric forcing, is an important feedback in global climate

change. Subtle shifts from one phytoplankton community
to another can have dramatic impacts, yet little is known

about large spatial scale changes in community structure.

For example, the reduction of the ozone layer in the South-
ern Hemisphere results in increased ultraviolet (UV) radia-

tion reaching the surface of the ocean. Preliminary studies

indicate that the response to this increased UV radiation

is species-dependent; changes in species composition will

likely ripple throughout the entire ecosystem (Smith and

Baker 1989).
Estimates of CDOM are also important in understand-

ing carbon cycling. The amount of carbon in all DOM is

thought to be as much as the entire terrestrial biomass.
Processes that affect the partitioning of carbon between

DOM and particulate forms will also impact carbon cy-

cling. Partitioning, however, has been accomplished near
the shore using hyperspectral data from aircraft (Carder

et al. 1993a). Limitations due to the spatial and spectral

resolution of planned ocean color sensors (approximately

1 km with one band every 10-20 nm) will reduce their util-

ity in coastal regions.
Rivers are major sources of fresh water, sediments, nu-

trients and DOM to the coastal zone, in addition to pollu-

tants that may be transported in soluble and particulate
forms. Since CDOM from rivers is rather conservative with

respect to salinity, it can be viewed from aircraft or space

and used to trace terrigenous effluents and to quantify

coastal salinity (Carder et al. 1993b). As riverine nutri-

ents are incorporated into biomass by phytoplankton, the
balance between absorption by CDOM and phytoplankton

shifts, and a partition between mixing effects (CDOM) and

growth and loss effects on phytoplankton biomass (chloro-

phyll a) may be achieved. Furthermore, knowledge of the

river flux, plume area, and salinity provides valuable in-
formation necessary for estimating plume thickness from

space; these data are important to calculating the light
field in and beneath the plume (Miiller-Karger et al. 1989).

Near the major rivers of the world, this approach can

be attempted using ocean color sensors with 1 km resolu-
tion. For smaller rivers and estuaries, higher resolution is

required to resolve smaller patch sizes and to correct for
interference from bottom reflection which can perturb low-

resolution coastal imagery. Hyperspectrai imagery with

spatial resolutions of about 100 m appears appropriate to

help in assessing the flux of materials across the land-sea

boundary as well as their influence on primary production,

sediment dynamics, and pollution.

3.4.2 Interpreting Ocean Color

Any rise in sea level or coastal subsidence (for example,

the Mississippi delta), may greatly affect nutrient fluxes,

land usage, and nursery grounds for important fisheries.

To interpret ocean color in the coastal zone where per-

haps the strongest influence of humankind on the ocean
is likely to occur, a significant improvement in the perfor-
mance of the LANDSAT class of sensors is required, with

a movement away from hyperspatial sampling and toward

hyperspectral sampling. Improved SNR can be achieved

by using larger pixels, e.g., 60-90m and increased dwell

or integration time in order to cope with a need for 10-

15 nm sampling with contiguous bands, e.g., Carder et al.

(1993a).
Although improved estimates of phytoplankton biomass

and perhaps the separation of biomass into contributions

by major phytoplankton groups will be of great value, sci-
entists must look beyond these static variables to mea-

surements of dynamics, specifically primary productivity
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and cycling of DOC. Although several approaches to esti-

mating primary productivity using remotely sensed data

have been described over the last 10 years, at present, sci-
entific understanding and data sets axe still inadequate.

Most models rely on the basic biomass estimates collected

from ocean color sensors to infer production rates. Vari-
ous empirical methods are used to derive light adaptation

and other physiological parameters to improve these rate
estimates. Existing models explain less than 50% of the

variance, and the model predictions are only within about

an order of magnitude of the actual values (Balch et al.

1992, Platt and Sathyendranath 1993, and Balch 1993).
However, there has been much recent progress, and it is

expected that improved models will appear in the next

year.

3.4.3 Discrepancies in Productivity

The challenge for remote sensing and biological ocean-

ography is to understand the reasons for these discrep-
ancies between actual and predicted productivity and to

determine the appropriate time and space scales that can
be modeled. No doubt some of the discrepancies result

from the differing sampling characteristics of the satellite-

based approach and the in situ measurements; that is, the
satellite averages over depth and over area, whereas ships
sample discrete points. The use of aircraft sensors to ex-

tend the ship measurements over wide areas of the satellite

image should improve the estimates. However, this cannot

explain all of the variability. When physiological infor-
mation is added into the productivity models, the quality

of the predictions increases substantially. Clearly, mod-
els based only on biomass are missing critical information.

This is not a surprising result--the same results have been

noted with terrestrial ecosystems. Although biomass is re-
lated to productivity, it is not the only determinant.

Much of the variability in the standing stock productiv-

ity relationship is a result of physiological processes, either
due to adaptation or changes in species composition (Platt

and Sathyendranath 1993). At present, species changes
and the use of other variables to parameterize adaptation

are generally ignored. For example, temperature may be

used to infer nutrient availability (through mixing) as well
as respiration. Presumably, similar relationships could be
used involving SST, wind stress, and latent and sensible

heat fluxes to derive vertical mixing rates which could then

be used to infer light and nutrient supply rates. Although

such an approach explicitly includes processes that are only
parameterized in simpler models, they are burdened with

many other parameters that must be defined, such as adap-
tation rates.

3.4.4 Promising Lines of Research

In terms of ocean color studies, there are at least two

promising lines of research. First, existing research indi-

cates that information on the photoadaptive state will sig-

nificantly improve productivity estimates. Although the
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relationship of sun-stimulated fluorescence to photoadap-

tive parameters is not completely understood (especially
for surface, light-inhibited populations), fluorescence bands
will be included on MODIS, GLI, and MERIS. This infor-

mation will provide direct estimates of the physiological

state of the phytoplankton and, coupled with biomass es-

timates using measurements from other wavelengths, will
improve productivity models (Chamberlin et al. 1989 and

Kiefer and Reynolds 1992). The availability of morning
and afternoon MODIS sensors early in the next century

will allow the study of some aspects of diel variability, at

least in regions of the world ocean that are not obscured by
glint during one of the passes. Measurement of diel varia-

tions in sun-stimulated fluorescence might further improve
models of phytoplankton growth rates. However, consider-
able field work remains before sun-stimulated fluorescence

can become a standard tool for estimating productivity.

The second line of research is to expand the produc-

tivity models to incorporate more biological and physical

processes explicitly. Clearly such an approach must reflect

the increased understanding of the processes that regulate
growth rates. A balance must be maintained between in-

creasing the rea/ism of the productivity models and adding
unnecessary detail. As noted earlier, realistic models in-

crease the number of free parameters that must be esti-
mated.

The net result of this research will be an improved un-
derstanding of the processes that control carbon cycling

and storage in the ocean. The availability of a multi-

decade, consistent time series on ocean pigment and pri-

mary productivity will allow the scientific community to

study the role of low frequency variability in ocean biology.

For example, ENSO events occur roughly every 3-4 years
so that a 20-year time series should contain about five such

events. The impact of ENSO events should be character-
izable with a high degree of statistical robustness. More

importantly, this long time series, if properly calibrated,
will allow scientists to determine the ocean's response to

long-term climate change.
By using numerical models that assimilate observations

from satellites and in situ sensors, predictions could be

made about the interactions between atmospheric forcing
and primary productivity. However, data assimilation re-

quires that the variance (error) structure is known of both
the data sets being assimilated and the model relation-

ships. For example, the temporal and spatial variance

spectrum of light utilization parameters would be a key
component of a productivity model that relies on assim-

ilation techniques. At present, the understanding of the

time and space variability of most biological properties is

quite crude. However, such measurements are not beyond

the scope of many planned and operational global ocean-

ography programs. If the ultimate goal is the prediction

of ocean carbon cycling in response to changes in atmo-
spheric forcing, then collection of such data must begin, as
well as the development of assimilation models.
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Althoughthefocusofthisdiscussionisonglobal-scale
processes,small-scalestudieswill alsobenefitfromaccess
tooceancolorobservations.Forexample,studiesofcoastal
dynamics,riverplumes,andfisherieshavemadeextensive
useof 1km resolutionCZCSdata(AbbottandChelton
1991).Internationaleffortssuchasthe LandOceanIn-
teractionin theCoastalZone(LOICZ)programandthe
GlobalOceanEcosystemsdynamics(GLOBEC)program
will requirehighspatialresolutionoceancolorobserva-
tions. In particular,highspectralresolutionobservations
will benecessaryin orderto distinguishthevariousdis-
solvedandparticulatecomponentsof theupperoceanin
bothturbidandproductivecoastalwaters.

4. Concerns

There are numerous concerns associated with ocean

color research, running the gamut from management is-

sues, to those regarding the sensors themselves. In this

section, some of these issues are discussed.

4.1 Management Oversight

The goal of a 20-year time series of global ocean color

observations requires an unprecedented level of coordina-

tion between US federal agencies and their international

partners. Sensor design and calibration should be well-
documented such that data processing can take sensor per-

formance into account. Data systems must be designed so

that the processing history can be preserved and data and

algorithms can be easily shared. Such coordination, how-

ever, must take place in an era of constrained financial re-
sources. New methods for management must be explored.

The programmatic direction for current and planned
work in ocean color remote sensing during the next decade

is not very well focused. Several federal agencies, e.g., the

US Navy, the National Oceanic and Atmospheric Adminis-

tration (NOAA), the National Science Foundation (NSF),
and NASA have interests in ocean color research and ap-

plications in the US. Similarly, there is strong international

interest in Japan and Europe. NASA and NSF have taken
the lead in national and international coordination through

sponsorship of meetings, but there is currently no specific
US federal focal point for such activities nor any ad hoc or

standing group which coordinates US federal policy. His-

toricaily, NASA has taken the lead in this area, however
there is no longer a civil service associated with this port-
folio.

A loose triumvirate of program managers is acting as

an advisory group for the oceans with the biogeochemistry

program manager taking the lead on ocean color matters.

A diffuse federal focus coupled with a diffuse programmatic
base in NASA has forced the development of a variety of ad

hoc efforts to deal with issues such as SeaWiFS calibration

and validation, ship time, etc., and has left the community

with an unclear idea of which agency is _esponsible for

which activities. The challenge is even greater in regards

to foreign missions. In a cost-constrained environment, all
of the available resources must be leveraged where possi-

ble. For example, shared cruises could help reduce ship

time costs. Although SeaWiFS has extensive international

involvement, there must be similar efforts focusing on the

whole spectrum of ocean color missions.

4.2 Pre-EOS Missions

With the launch of SeaWiFS in 1994, the oceans com-

munity will again have access to high quality ocean color

data after an eight-year gap. SeaWiFS has an established
science team who will ensure that the data are processed

and calibrated to the highest standards. It should be re-
called that SeaWiFS has had a science oversight committee

throughout its definition, design, and construction phase.

4.2.1 EOS-Color Background

The EOS-Color mission arose from the EOS program

as a substitute for MODIS-T, which was deselected from

the EOS payload. With the launch of the nadir-viewing

MODIS (formerly MODIS-N) on the first EOS morning

(AM-l) platform, it was realized that the coverage of the
ocean would be greatly reduced, given the contamination

by sunglint. EOS-Color is designed to provide measure-

ments to complement the single MODIS sensor until the

first EOS afternoon (PM-1) platform is launched in 2000.

Two MODIS sensors will provide complete global coverage

in the same amount of time as a tilting sensor. EOS-Color

was conceived as a sensor with identical specifications as

SeaWiFS, using the data buy model.

There are a number of advantages to the data buy
model. SeaWiFS is the first ocean satellite mission which

may take less than four years from inception to launch.

Historically such missions have taken 5-10 years to com-

plete. Ideally, a similar program should be established for

EOS-Color. However, only recently has there been an or-

ganization established within the EOS Project to ensure

that the EOS-Color mission is designed and implemented.

With the establishment of a group designated with the

responsibility for EOS-Color, the risks of it becoming an

orphan in an era of constrained resources have diminished.
However, note that EOS-Color is often forgotten in various

reports, such as those from the EOSDIS Core System.
It is not known which of several mechanisms may be

chosen to implement EOS-Color. Time is growing short
for formalization of the EOS-Color mission so that a plat-
form and sensor will be available in 1997-98 as a SeaWiFS

follow-on, even if a mechanism similar to SeaWiFS is uti-

lized. If the EOS-Color sensor is not similar in design to

SeaWiFS, then it will be more difficult to cross-reference

sensor calibrations, and particularly data algorithms, in

order to achieve the goal of a consistent time series. These

issues should be resolved as soon as possible.



OceanColor in the 21st Century: A

4.2.2 EOS-Color Science Issues

The global biogeochemistry community has made it
clear that the most important attribute of satellite ocean

color missions during the 1990s should be continuity so
that a decadal time series can be constructed. Events such

as the Mt. Pinatubo eruption which resulted in global cool-

ing, are also thought to have impacted the carbon cycle in
both oceanic and terrestrial ecosystems to an extent that

the rate of atmospheric CO2 increase slowed significantly
for the last three years. The absence of an ocean color

sensor during this period has hampered critical studies of

the Earth's carbon cycle. Improvement in sensor spectral
coverage is a secondary requirement.

The EOS-Color sensor specifications should provide

continuity with the SeaWiFS spectral and SNR perfor-
mance. That is, EOS-Color can have additional bands with

higher digitization rates and SNR goals, but at a minimum

it should provide continuity to the SeaWiFS mission. Ini-

tial discussions with the Hughes Santa Barbara Research

Center (SBRC) indicates that additional channels beyond
the SeaWiFS baseline entails trade-offs which must be con-

sidered. However, there will be improvements in sensor

technology over the next few years which may allow these

additional bands. Such studies should begin as soon as

possible to determine their scientific and financial impact
on the mission.

Implicit in the planning for the EOS-Color baseline el-

ement is the need for temporal coverage with similar illu-
mination conditions to SeaWiFS; this element will affect

orbital parameters such as crossing time. The most no-

ticeable changes to EOS-Color would be an upgrade to
the onboard recorder capabilities so that 1 km data can

be collected globally, along with 12-bit digitization of the

data to improve SNR and to accommodate high quality

measurements over land. These improvements will greatly
simplify the integration of global high resolution data that

is, at present, problematic for SeaWiFS and will improve

sensor sensitivity in low chlorophyll a regions of the world

ocean. The continuity requirement also implies that ancil-

lary support fields such as ozone, surface wind and pres-
sure, and in situ calibration and validation observations

must be consistently available.

4.2.30CTS

The other pre-EOS mission is OCTS which is planned
for ADEOS. ADEOS is scheduled to e launched in 1996

and will carry a suite of sensors, including the NASA scat-

terometer (NSCAT). OCTS will have performance charac-
teristics that are better than CZCS but not of SeaWiFS

quality. However, the availability of simultaneous vector

winds (from NSCAT) and SST (from the IR bands on

OCTS) will allow sophisticated studies of upper ocean dy-
namics. For example, it may be possible to estimate CO2

gas flux across the air-sea interface. It must be remem-

bered, however, that OCTS was conceived primarily as
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an engineering experiment in sensor design, and it is not

driven by science requirements such as those used to design
SeaWiFS, EOS-Color, and MODIS.

Currently, NASA and NASDA have ongoing discus-

sions concerning a Memorandum of Understanding (MOU)
for ocean color and in situ data exchange between their two

scientific and technical communities. Representatives from
each of the respective scientific communities serve on the

other science team. NSF and NASDA have sponsored sev-
eral workshops to coordinate ocean color science. These

workshops have also facilitated coordination of instrument

and data processing design. However, reciprocal access

to SeaWiFS and OCTS data has not been completely de-
fined, nor have procedures been established to ensure data

compatibility.

4.3 Calibration and Validation

Through experience gained using the CZCS, the ocean

color community learned the painful process of retrieving

useful data from a sensor with slowly degrading perfor-

mance and at times, strangely perturbed data (Gordon et
al. 1983). It is very difficult to determine a sensor's calibra-

tion once it has been launched (Viollier 1982, Gordon et al.

1983, Hovis et al. 1985, Mueller 1985, and Gordon 1987).
Operating on a spacecraft shared by many sensors, the

CZCS time-shared many of the resources of the platform

such as power, recording, and communications, and oper-

ated at a maximum of 10 minutes per orbit. Such cycling

likely contributed to sensor instability through changes in
the thermal and power environments of the instrument.

The CZCS performed under such conditions, with de-

creasing efficiency and stability with time, for nearly eight

years. Because of the relatively large atmospheric con-

tribution to the total observed radiances (Gordon 1981)
and the great sensitivity of the bio-optical algorithms to

the estimated water-leaving radiances (Clark 1981), small
errors in the calibration can induce sizable errors in the

derived geophysical products, rendering them useless for

many applications. On must remember that typical values

of remote-sensing reflectance (R_s = Lw/Ed where P_s

is the reflectance, Lw is the water-leaving radiance, and

Ed is the downward irradiance) for open ocean waters are

less than 0.008, so the relative stability of the instrument
performance is extremely important.

4.3.1 The CZCS Method

The method used to achieve vicarious calibration for

CZCS is described in detail in Gordon (1987) and more re-

cently by Evans and Gordon (1994). By observing the ap-

parent changes in water-leaving radiance values for clear-

water regions (e.g., the Sargasso Sea) where stable val-

ues of normalized water-leaving radiance are the norm,

the clear, normalized water-leaving radiances, LWN(443),

LW-N(520), LWN(550), were assumed to be 1.40, 0.48, and
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0.30#Wcm-2 nm-1sr-1,respectively.TheAngstromex-
ponentswereassumedto bezero,correspondingto stan-
dardmarineaerosols.Thecalibrationwasinitialized af-

ter launch by forcing agreement between the sensor de-
termined radiance and the expected radiance based upon

radiometric measurements made at the surface under very

clear atmospheric conditions. Since the calibration changed

with time, most applications occurred under more turbid

atmospheric conditions and different illumination geome-
tries than for the initial data sets. Calibration coefficients,

derived for other scenes, were adjusted by water-leaving

radiance measurements.

Finally, a compromise calibration curve, as a function

of time, was derived based upon the best agreement be-
tween sensor-retrieved pigments and measured pigments,

since high-quality water-leaving radiance measurements
were available for only a few of the campaigns made dur-

ing the operation of the CZCS. Thus, the CZCS calibration
was not strictly radiometric, but was a calibration of the

entire system including the sensor and algorithms. The vi-
carious calibration of the 443 nm band is tenuous because

of the great variability in LwN(443) even in dear-water.

Clearly, this approach ignores real variability that may be

present in the ocean, such as in the central gyres, so other
methods must be developed for long-term studies.

4.3.2 The SeaWiFS Method

The calibration of SeaWiFS will include both onboard

and vicarious approaches. SeaWiFS will have a deployable

diffuser plate and will be capable of periodically imaging
the moon by maneuvering the spacecraft. The diffuser

provides the means of making reflectance measurements

from the spacecraft, and the moon observation can correct

for long-term changes in the albedo of the diffuser plate.

Optical moorings will be maintained at clear-water sites
to continuously measure LwN (_), and research campaigns
to and around the moorings will provide additional data
for vicarious calibration activities.

It is necessary to vicariously calibrate each ocean color

sensor since it is likely that the calibration will change sig-

nificantly during launch. The vicarious calibration requires
extensive measurements of the optical properties of the at-

mosphere and ocean nearly simultaneously with a satellite

overpass. The required data cannot be obtained by sim-

ply comparing the output of two different satellites, e.g.,
MODIS and EOS-Color, when contemporaneously viewing
the same oceanic area. This is due to the highly variable

aerosol component of the signal, to variations in reflectance
with time of day, and to differences in the sensors them-

selves. Thus, a dedicated initialization cruise is a minimum

requirement for each ocean color sensor. After initializa-

tion, one can monitor the calibration of the two sensors by
comparing water-leaving radiances over regions with ho-

mogeneous optical properties, e.g., the Sargasso Sea. Con-
sistency between derived radiances would suggest that the
calibration has remained stable since the last comparison.

Clear-water calibration sites in the Northern and South-

ern Hemispheres are needed to evaluate any effects of ther-

mal cycling on sensor performance. It is preferable to have
multiple sites viewable on a single orbit, with northern and
southern sites in the Atlantic and Pacific oceans and a site

in the Indian Ocean. It is hoped that by controlling orbital

temperature fluctuations on the sensor to less than 2 ° C,

a high degree of performance stability can be achieved on
the sub-orbital time scale where diffuser-plate calibration

data for drift correction are unavailable.

4.3.3 Other Concerns

The ocean color sensor to follow SeaWiFS may be un-

able to view the moon by spacecraft maneuvering if flown
on a multi-sensor bus unless a special mirror or tilt mech-

anism is built into the design, e.g., MODIS and the High

Resolution Imaging Spectrometer (HIRIS) types of designs.
Moon-view capability should be a requirement for all post-
SeaWiFS ocean color sensors. However, if lunar viewing is

possible only through the use of special optics as opposed
to direct viewing, then particular attention must be paid

towards minimizing polarization of these systems.

It is unlikely that SeaWiFS or the EOS-Color sensor
can survive the vibrational and thermal environments of

launch without changing its calibration. Calibration errors
relative to the solar constant of the order of 5% are likely

after launch. This level of radiance error is of the order

of Lw(A), a totally unacceptable level of error even under

the best of prelaunch calibration scenarios.

Presumably the diffuser plate albedo will suffer little

degradation during launch. However, when deployed for

calibrating SeaWiFS or EOS-Color in the reflectance mode,
condensates and other particles will adhere to the surface

of the diffuser, and high-energy photons may degrade it.

Even if the prelaunch reflectance values for the diffuser sur-
face were as accurate as 2% and no degradation occurred

after launch, that still would result in about a 40% error
in derived values of reflectance for the ocean.

For SeaWiFS and EOS-Color, a more vigorous radio-

metric approach will be taken. More high quality water-

leaving radiance measurements from field studies are antic-

ipated, especially in the vicinity of the calibration mooring
sites. Furthermore, rather than simply making compar-

isons of satellite derived versus measured pigments, com-

parisons of the satellite derived versus measured absorp-
tion coefficients and diffuse-attenuation coefficients can be

made, eliminating the errors induced by uncertainties in

the pigment-package effect and by variations in absorption

due to CDOM, e.g., Carder et al. 1991 and Gordon 1991.

Although the above discussion was framed in terms of
SeaWiFS and EOS-Color, the same issues apply to OCTS,

MERIS, GLI, and the MODIS sensors. Simply stated, each
sensor must be calibrated and an initial in situ validation

cruise will be required shortly after each launch. The vicar-

ious method developed by Gordon and co-workers (Evans
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and Gordon 1994) provides a powerful technique to cali-
brate the entire ocean color system.

An extensive calibration program is planned for the

EOS sensors; these efforts must be coordinated with the
methods described here. The issue of international coor-

dination also arises in this context; extensive in situ ob-

servations are costly, and cooperation between the various

international partners could reduce the costs for each coun-

try.

4.3.4 Mission Overlap

The final point in the issue of calibration is the over-
lap between the various missions. Given that there will

be periods when more than one sensor is in orbit at any

one time, maximum priority should be given towards con-

ducting calibration and validation cruises to compare the

sensors during these overlap periods. For example, in 1998,
SeaWiFS, OCTS, EOS-Color, MERIS, and MODIS should

all be in orbit. GLI will follow in 2000. Collecting exten-

sive calibration and validation measurements should help
develop a consistent time series of ocean color measure-
ments from this diverse set of sensors.

A six-month overlap between ocean color sensors, e.g.,
between SeaWiFS and EOS-Color, would enable recali-

brating the likely degraded SeaWiFS with the new EOS-

Color. This would also ensure radiometric continuity be-

tween the two missions which, to the extent that the sys-

tem algorithms (atmospheric and bio-optical) provide ac-
curate products, would facilitate continuing studies of in-

terannual variability. Clearly, this intercalibration effort
will require cooperation on an international level.

4.4 Data System Issues

The primary goal of a 20-year time series requires that

the data processing and distribution system be designed to
safeguard the raw data and the calibration and validation

information, to enable reprocessing, and to ensure efficient

transfer of data and algorithms to US and international

researchers. The data system cannot view itself in isola-

tion from contemporaneous data centers or systems that

may precede or follow it. High priority must be given to-

wards ensuring the compatibility of these basic services.

While a data system may focus on a specific mission, e.g.,

SeaWiFS, its role in the larger constellation of ocean color

missions must be retained. It must be carefully integrated
into a data systems strategy that ensures ease of use of
other Earth data sets.

Particular attention should be paid to retention of the

sensor design, calibration, and validation information. This

will allow future researchers to reprocess the data in a con-

sistent manner. Rather than becoming a standard product
assembly line, the SeaWiFS data system should be able to

locate and retrieve the raw satellite data and apply any al-

gorithm. Interfaces should be clearly defined so that future

advances in computer technology can be inserted. This re-

quires a level of flexibility in the basic system design that
is not usually found in most data systems.

4.4.1 SeaWiFS

Distribution of SeaWiFS GAC derived products will be
provided by the GSFC Version 0 (V0) Distributed Active

Archive Center (DAAC). Data will be available via stan-

dard media or network access and will be governed by the
EOSDIS data charging policy. The SeaWiFS Science Team

should work with the SeaWiFS Project and V0 DAAC
to ensure that access to SeaWiFS data products satisfies

the needs of the SeaWiFS investigators. Additionally, the

methods for delivery of near-real time products for support
of cruise activities need to be identified.

Standard level-l, -2, and -3 products will be produced
by the SeaWiFS Project, which include reduced resolution

browse images and several time scales for temporal com-
posites. In addition to the data services, standard Sea-

WiFS processing software will be available through the

DAAC. The browse capability will be available to regis-
tered SeaWiFS investigators through network accessible X

Window software. Data will be available following the em-
bargo period specified in the Orbital Sciences Corporation

(the manufacturer of the SeaWiFS instrument) SeaWiFS
data purchase agreement with NASA.

4.4.2 The DAAC

The DAAC will distribute standard products as re-

ceived from the SeaWiFS Project and provide for the gen-
eration of special products whose preparation costs would

be borne by the requesting investigator. Spe_al products
could include subsetting by selected area. A series of sec-

tors is being used by the Physical Oceanography DAAC
at the Jet Propulsion Laboratory (JPL) to distribute SST
and CZCS data that cover portions of the ocean basins.

Availability of these sectors for the new sensors would per-
mit simpler data set manipulation by a wider user group.
Mechanisms should be identified and implemented, how-

ever, to enable dynamic subsetting of the archived data.

Also, it is noted that the DAAC has not been designed

to accommodate either raw or processed LAC (full spatial
resolution) data. Users may access catalogs that contain

the holdings of the various receiving sites that have agreed

to provide such services. However, there are no plans at
present to produce data sets composed of the full resolu-
tion, 1 km data, such as chlorophyll a in the US Exclusive

Economic Zone (EEZ).

Although there is interest in acquiring some data prod-
ucts directly from investigators, the basic requirement

should be flexible processing so that new algorithms can
be applied to the entire data set as scientific understand-

ing of ocean color remote sensing evolves. The data sys-
tem should be viewed as a processing and delivery system,
rather than just a storehouse for predefined standard prod-
ucts.
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4.4.2 EOSDIS

Eventually,theneedsforoceancolorresearchwill tran-
scendthoseofaspecificflightproject(SeaWiFS).Theneed
to negotiateagreementswith foreigndatacenters,aswell
astheneedto maintaincontinuityoverthefull suiteof
oceancolormissions,will requirea datasystemwith a
muchlargermandate.It is clearthat EOSDISmustas-
sumeresponsibilitiesfor SeaWiFS(andits successors)in
thenearfuture.Transitionof processingorservicesfrom
theSeaWiFSProjecttoEOSDISshouldbeseamless.New
capabilitiescanbeadded,but transitionto thenewenvi-
ronmentshouldnotintroducechanges(ordegradation)in
definitionor accessto products,quality,or timelinessin
delivery.

4.4.3 Data Access

Globalchangeresearchisbasedonthepremisethatac-
cesstoconsistent,highqualitydatasetswillbemaintained
throughsuccessivegenerationsofsensors.Foroceancolor
research,thisimpliesaneedto retaintimelyaccessto data
setssuchasCZCS.TheDAACmustprovidefastaccess
anddistributionof CZCSdataasa requirementequalin
importanceto thesupportof futuredatasets,e.g.,Sea-
WiFS,MODIS,etc.

ThepresentSeaWiFSdatapolicywill requiretheEOS
datapolicyto bemodifiedto includeadditionalaccessand
useconstraintsforproprietarydatasets.Thispolicydoes
not addressthe point at whichthe dataprovideris no
longerableto restrictdistributionof multiplegeneration
dataproducts.Forexample,dotherestrictionsthat per-
tainto theoriginalproprietarydatasetautomaticallyex-
tendto includeaheatfluxmapthatwascomputedinpart
by incorporatingadiffuseattenuationfieldderivedbyus-
ingthesatelliteobservedradiances?

Theimplicationsofincorporatingproprietarydatasets
in thebroaderEOSdataproductinventoryneedto bear-
ticulated.ThepresentSeaWiFSdatapolicy,if interpreted
in themostrestrictivemanner,willnotpermitthedissem-
inationof digitalglobalchangeresultsto a widerangeof
Earthscienceapplicationsandusers.

4.4.40CTS, MERIS, and GLI

NASA and NASDA are negotiating an MOU which lays

the framework for exchange of SeaWiFS and OCTS level

1, 2, and 3 data sets. Given the existence of access restric-
tions for at least one of the data sets, what is the appropri-

ate route for US investigators to apply for access to OCTS
data and what limitations exist for use and release of data

or publication of results? Again, the need to collaborate
with the entire ocean color research community on both

science and calibration and validation issues, requires that
close ties be established between US and international sci-

entists and agencies in conjunction with their respective

projects. Delivery and timeliness should be complemen-
tary for the two data sets. Special arrangements should

be made to support calibration and comparison of the two
data sets. It is expected that this proposed relationship

will be continued with GLI.

At present, there are no formal arrangements between
ESA and NASA on the incorporation of MERIS into the

time series of ocean color observations. In part, this is be-

cause the MERIS development activities are somewhat be-

hind those of MODIS. Like OCTS, MERIS is viewed as an

experimental sensor with programmable bands which will

be used to explore new algorithms for land, atmosphere,
and ocean processes. MERIS is not an operational ocean
color sensor in the sense of SeaWiFS. It is unlikely that

it will be used to collect global ocean color measurements

on a consistent, daily basis; there are, however, obvious

possibilities for cooperation.
A critical issue facing the scientific use of data from

non-US sensors is the lack of support for calibration and

validation or analysis activities by US agencies. Presently,
there is no mechanism for a US investigator to obtain fund-

ing to analyze data from OCTS or MERIS. More impor-

tantly, there are no funds to support cross-calibration stud-
ies. As Earth science becomes increasingly dependent on

international partnerships to obtain critical Earth science

data, US agencies must be willing to support science and
calibration and validation activities that rely on non-US

sensors.

4.4.5 EOS-Color and MODIS

It is anticipated that the EOS-Color instrument will be

very similar to SeaWiFS, but perhaps with a radiometric
sensitivity that approaches MODIS. This being the case,

only a slight modification of the SeaWiFS and MODIS

algorithms will be required. For example, the look-up ta-
bles for the contribution by molecular scattering to the
sensor radiance will have to be recomputed for the actual

EOS-Color spectral functions. Other lookup tables may

have to be recomputed as well (depending on the structure

of the SeaWiFS and MODIS algorithms). As it is expected
that the SeaWiFS algorithms will be updated continually

as improvements are made, little effort should be required

to incorporate SeaWiFS and MODIS improvements into
EOS-Color.

The data distribution policy for EOS-Color should fol-

low rules applicable to NASA furnished EOS sensors and
not be subject to SeaWiFS specific access and distribution
restrictions.

The EOS-Color mission is scheduled for a time frame

consistent with the launch of MODIS. It is reasonable to

assume that the EOSDIS programming and facilities sup-

port that are available to MODIS will also be available
to EOS-Color. The specific product generation facilities

could include dedicated EOS-Color, MODIS Team Leader,

or EOSDIS computer and personnel resources. The data

delivery policies and mechanisms should parallel those for
MODIS consistent with the data downlink capabilities of

the spacecraft.
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Additionalsupportmayberequired for sensor initial-

ization cruises depending on the applicability of planned
MODIS experiments to support the EOS-Color sensor af-

ter launch. Support for radiative transfer modeling or

bio-optical algorithms will be required to the extent that

channel selection or sensor characteristics depart from Sea-

WiFS specifications. It is expected that the experience de-
rived from the SeaWiFS mission and from the preparation

for MODIS will minimize special activities for EOS-Color.
However, additional time will be required to initialize, cal-

ibrate, and ensure quality control for the EOS-Color mis-

sion; availability of personnel resources will depend on the
phasing of the EOS-Color and MODIS missions.

4.5 Convergence

The planned ocean color missions over the next 10

years must not be viewed as interchangeable--each sensor

is being designed according to scientific and engineering re-

quirements from each sponsoring agency. Although there
is overlap, it is a mistake to assume that one sensor can

simply be replaced by another. The goal of the science

community is a continuous observing system to monitor
and predict changes in the Earth system. Thus, the next

decade should focus on understanding the critical Earth

system processes and their associated scales of variabil-
ity. In this regard, scientists must be able to define both

the measurement and sampling characteristics of a future
ocean color observing system. Such an evaluation must

include the instrument characteristics (bands, SNR, etc.)
and sampling (orbits, number of sensors, etc.).

An understanding is needed of all of the sources of er-
ror in estimating critical variables such as phytoplankton

biomass and primary productivity. The past focus with
CZCS has been on algorithm and calibration errors; fu-

ture work must also consider sampling errors (Chelton and

Schlax 1991). The impacts of these errors must then be as-
sessed on the potential scientific return from the observing

system. For example, is the cost of a higher SNR jus-

tiffed in terms of improved scientific understanding and
prediction, or is the improvement only marginal? How

much investment must be made in long-term moorings for

calibration given the total system (sensor plus sampling)
error?

Numerical models of the physical and biological pro-

cesses in the upper ocean will play an important role in
these studies. Models will provide the underpinning for

any ocean prediction system. However, it is apparent that

the models are too primitive at present, even in the area of

physical oceanography. The ties must be strengthened be-
tween modeling and observing systems so that the two ap-

proaches can complement each other. Because such mod-

els must rely on both physical and biological data sets, the

development of an ocean color observing system must also

specify the necessary data sets on physical processes.
At present, there is very little interagency coordination

at this level. The responsible agencies are just beginning
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to explore fundamental issues such as calibration and data

systems, but the missions are still viewed as essentially

separate. The science community must use this opportu-

nity of multiple sensors to conduct the necessary studies
and evaluations. This must be an international effort from

the outset with an eye towards developing a cost effective

system for making ocean color observations over the long

term in the context of climate change. Tradeoffs between

sensor capabilities and cost must be made in light of the
overall science return of the mission.

5. An Implementation Plan

This section discusses issues that need to be addressed

in order to implement the plan.

5.1 Science Oversight

The development of a 20-year time series of ocean color

observations from a disparate set of sensors will require an

enormous effort and cooperation between many agencies
and several countries. At present, there is no formal group

at the government level in the US that has responsibilities
for these activities.

[] Recommendation: CENR should form an intera-

gency working group on satellite ocean color re-
search and applications with representation from all

interested US agencies. A charter for this working

group should include both US and foreign missions.

It should serve as the focal point for foreign collabo-

ration. This group must also consider the necessary
modeling activities and physical observations that

will be required to analyze and interpret ocean color
data.

Presently, NASA has three ocean color missions in var-

ious stages of planning and implementation, each with its

own management structure. Given the interlocking web

of funding, algorithm development, and management, a
coherent, coordinated plan must be developed as soon as

possible. Not only will this result in a more effective use

of investigators' time, it will also provide a roadmap so

that the research community and NASA can identify how
resources are being allocated.

[] Recommendation: NASA should convene a meeting
of the appropriate project and program personnel,

including contract management, along with repre-

sentatives of the ocean color research community as

soon as possible to develop an overall ocean color
program. This program should consist of plans for

research, software development, data processing and

delivery, funding, and management.

5.1.1 EOS-Color

Although the initial plan is for EOS-Color specifica-

tions to be identical to those of SeaWiFS, there are some
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potential improvements that must be investigated from a
scientific, technical, and financial point of view. These in-

clude lossless data compression, or additional recorder ca-

pacity, so that 1 km resolution data can be collected glob-

ally; improved digitization (12 bits versus 10 bits for Sea-

WiFS); increased SNR; and the possibility of additional
bands. With a launch date of 1998, these studies should

begin as soon as possible. The impacts of EOS-Color on
EOSDIS and other aspects of the EOS Project also need

to be evaluated.

[] Recommendation: An EOS-Color Mission Working

Group should be designated during calendar year
1994. This should include both science and project

representation. This group should consist of mem-
bers of the MODIS Oceans Team and the SeaWiFS

Team. It should be tasked with providing the sci-

ence oversight for the EOS-Color mission.

5.1.2 EOS-Color and SeaWiFS Interfaces

The community has expressed a clear desire that an

effort be initiated to produce a consistent, decadal scale,

global time series of satellite ocean color observations. This

suggests that science, mission management, and data man-

agement will have to be coordinated between SeaWiFS,
EOS-Color and MODIS so that products, data sets, cali-

bration, validation, etc., are consistent across these efforts.

To address these issues, there must be a consistent view

from the scientific community, from NASA, and other fed-

eral agencies. Community consensus should be fostered by
formation of interlocking science teams for the missions,

while a single program manager should be designated to
coordinate these missions in NASA. Federal interagency

issues should be addressed by the aforementioned intera-

gency group.
Coupled with interlocking science teams and intera-

gency management must be a coordinated approach to

data management. Scientific need and available resources

necessitate a single, workable interface to ocean color data

fields, not several. Given the current EOSDIS architecture
it seems that the most effective mechanism would be to

generalize the current MODIS arrangement with EOSDIS
to include EOS-Color as an early EOSDIS, prelaunch (pre-

MODIS) data stream. This would build upon the SeaWiFS
and EOS DAAC structure currently being implemented

to provide SeaWiFS data fields to the community. How-

ever, it is also clear that the present DAAC plans for Sea-
WiFS will not accommodate LAC (1 km resolution) data.

Clearly, there will need to be a transition from SeaWiFS
to MODIS which has 1 km resolution. The data system for

SeaWiFS and EOS-Color could help in this transition.

[] Recommendation: EOSDIS should consider Sea-
WiFS and EOS-Color as a prelaunch system capa-

bility test.

5.1.3 The Science Teams

The MODIS Oceans Team was chosen to provide guid-

ance forthe MODIS-T and MODIS-N instruments with

respect to ocean colorand SST parameters. Thus, the
MODIS Oceans Team isthe naturalunit to provideguid-

ance for the development of the EOS-Color instrument.

Augmentation of team responsibilitieswould be an effi-

cient,timely mechanism to expedite EOS-Color instru-

ment scientificdesign and mission planning. The recent

inclusionofthe MODIS Oceans Team inthe SeaWiFS Sci-

ence Team has establisheda workable venue for coordi-

nation between EOS-Color, MODIS, and SeaWiFS. This

same venue would be equallyusable forEOS-Color.

[] Recommendation: The MODIS Oceans Team

should be designatedthe EOS-Color ScienceTeam,

which would be expanded upon the resultsof an

EOS-Color NRA. NASA should negotiate precise

agreements with the MODIS Oceans Team_ regard-

ing deliverablesand funding. These agreements
must be coordinated across the fullset of ocean

coloractivitiesso that an efficient,realisticplan is

developed.

The SeaWiFS NRA makes itclearthat the NRA pro-

cess is a very good mechanism for encouraging interna-

tionalcollaboration,aswellasan excellentway to broaden

the US satelliteocean colorcommunity. Rather than a sec-

ond announcement for SeaWiFS effortsin the mid-90s, it

may be more appropriateforNASA toissuean EOS-Color

NRA two yearspriortolaunch. This NRA could then cap-

italizeon SeaWiFS and OCTS observationswith a view

toward a decadal time seriesand the use of ocean color

heavilyfocusedon primary productivity,integratedocean

models, etc.

[] Recommendation: NASA should plan for an EOS-

Color NRA forthe 1996-97 time frame.

5.1.40CTS, MERIS, and GLI

As with SeaWiFS, international participation on sci-
ence teams has been extremely valuable. Similar cross-

appointments should be established for OCTS, MERIS,
and GLI. Such relationships strengthen scientific ties and

help leverage resources of all participating countries.

[] Recommendation: NASA should encourage invest

tigator relationships between US researchers and
their foreign colleagues. This may require agree-
ments on data delivery and policies, in which case

NASA, ESA, and NASDA should establish appro-

priate understandings as soon as possible.

5.2 Calibration and Validation

Initial calibration and validation cruises for each mis-

sion must be performed in waters with no significant hor-

izontal gradients in the water-leaving radiances and with
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vertically isotropic fields of inherent optical properties. For

initial calibration and validation research campaigns, this

dictates that waters be used with low pigment concentra-

tions which have little sub-pixel scale or mesoscale patch-
iness.

Effects of spacecraft navigational errors and sub-pixel

patchiness must not be allowed to contribute to radiance
variations in excess of the noise inherent in the instrument.

In the subtropical gyres, these conditions can usually be
met if cold-core eddies are absent. Such eddies are usually

detectable from both AVHRR and ocean color imagery.

Phytoplankton chlorophyll a and phycoerythrin pig-

ment can be easily mapped using aircraft laser systems.
Also, concurrent SST and airborne ext)endable bathyther-

mograph (AXBT) data can be used to define the com-

plete volumetric temperature field. Finally, the airborne

passive sensors can supply downwelling irradiance and up-
welling radiance within the calibration and validation re-

gion. Coupled with ship transects (Smith and Baker 1985)

and buoys, the complete multi-platform sensor suite (Smith
et al. 1987) can be brought to bear on the characterization
of the in-water optical properties.

[] Recommendation: As soon after launch as possible,

calibration and validation cruises must take place

in regions with appropriate bio-optical properties.

To reduce atmospheric effects and to extend clear-water

calibration and validation studies to higher latitudes, con-

sideration should be given to using and instrumenting large,
oligotrophic mountain lakes such as Lake Tahoe, Lake Tit-
icaca, and Lake Baikal for calibration and validation ac-

tivities for EOS-Color. Logistical costs would be greatly

reduced for lake moorings and cruises, and aerosol opti-

cal thicknesses would be relatively thin and more easily

monitored from a stable, shore-based facility. These mea-

surements may help to more effectively separate sensor cal-
ibration issues from atmospheric correction errors and dif-

ficulties with pigment algorithms.

[] Recommendation: Feasibility studies should be con-

ducted on the use of high-altitude, oligotrophic lakes
as calibration and validation sites.

5.2.1 Required Cruises

Shortly after launch, at least two vessels should be po-
sitioned in the Pacific, one each in southern and northern

clear waters, most likely near 30°N and 30°S latitudes.

They should be positioned so that both would be near

the center of the swath on a given orbit and should be
well away from eastern boundaries. Two additional vessels

could be used in the Atlantic in similar positions if the orbit

is ascending. This deployment should permit detection of

any significant thermal effects on the sensor performance

over the 60 ° latitude separation between ships, and will

provide several summer-winter pairs and spring-fall pairs
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of observations during the first 90 days after sensor turn-

on. It ensures that solar zenith angles as low as 7 ° and

greater than 50 ° will be encountered by at least one ship in
clear water for calibration initialization activities. At least

one time during this initialization period, the ship tracks

should converge for intercalibration purposes. Clear lake

measurements can extend the range of sun angles and lati-
tudes encountered to provide further checks on the thermal

stability of the sensor.

[]_] Recommendation: In order to investigate thermal

effects on sensor performance, calibration and vali-
dation cruises must be located in both northern and
southern waters.

Additional cruises will be required to evaluate instru-

ment and algorithm performances for eastern-boundary
and high-latitude settings, regions subjected to infusions

of desert aerosols, and for various major river plumes and

coastal environments. These waters are expected to affect
algorithms in the following ways:

1. High-latitude, spring bloom regions and eastern-
boundary upwelling produce phytoplankton which

are large with significant nonlinear light absorp-

tion effects due to pigment packaging. Degradation

products from senescent blooms, e.g., CDOM and
detritus, provide excess absorption relative to Case

1 waters (Carder et al. 1991).

2. High-latitude stations will test the robustness of the

method as they have low sensor signals, large solar

slant paths through the atmosphere, and high wind
stress, e.g., large foam areas, marine aerosol con-

centrations, and wave slopes.

3. The eastern tropical Atlantic and the horthwest Pa-

cific are subject to large inputs of mineral aerosols

from the Sahara and the Gobi deserts, respectively.
There is evidence that, unlike typical marine aero-

sols, such dust absorbs strongly in the blue region
of the spectrum. It is essential to verify that the at-

mospheric correction algorithms perform properly
in such regions to enable the derivation of accurate

bio-optical parameters and to assess the influence

of such materials on productivity.

4. River plumes will provide site-specific particle albe-

dos and terrigenous CDOM in addition to large-
celled, diatom-rich phytoplankton assemblages near-
shore and smaller cells offshore. Much of the color

in the plumes may be due to CDOM.

5. Coastal environments are expected to be site speci-

fic due to unique colors of suspended sediments and

terrestrial-marine mixes of CDOM, as well as opti-

cally complicated due to the shorter time and space
scales of variation.

These cruises are deemed to be of secondary impor-

tance during the initial 90 days of sensor operation since

sensor calibration cannot be easily accomplished in such
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waters. Resources can be diverted to these other areas

after sensor initialization is complete. The measurements

and protocols required for the calibration and validation
cruises are detailed in Mueller and Austin (1991).

Note that the Commonwealth Scientific and Industrial

Research Organization (CSIRO) of Australia, is develop-

ing calibration sites for both land and ocean observations.
Given that there is the possibility that SeaWiFS may re-
turn useful data from land surfaces, it is recommended that

NASA coordinate with Australian researchers on the use

of these sites for both SeaWiFS calibration and intercali-

bration with other sensors.

Ffil Recommendation: Although not needed during the

initial period of sensor operation, calibration and
validation cruises should be planned for other bio-

optical water types.

5.2.2 Expansion of Moorings

International partners, such as Japan, have plans for

bio-optical moorings to support their ocean color missions.

By providing data from NASA supported moorings to these

partners in exchange for access to data from their moor-
ing, this critical sensor calibration activity can be effec-

tively expanded at minimal cost. Not only should data be

exchanged, but information on calibration techniques and
protocols should be transferred so that these data can be

used effectively.

[]_] Recommendation: NASA should encourage inves-

tigators to collaborate with their foreign colleagues

to develop a global network of bio-optical moorings.

5.3 Access to Data

The restrictions imposed by data purchase agreements,

such as SeaWiFS, are counter to the open access policy

established by EOS. Derived products, such as heat flux,

that may be based in part on SeaWiFS data may be subject
to commercial restrictions. NASA must work to eliminate

these restrictions whenever possible. Although EOS-Color

may be a data purchase agreement, NASA must ensure
that there is no embargo period for data access nor any
restrictions on the distribution of data or derived products.

[-fS1 Recommendation: NASA must work to eliminate
all restrictions on access to ocean color observations,

consistent with the EOS data policy. This policy

must apply to both US and foreign researchers.

The transition between processing systems for a given
sensor should not result in a change of the product. To the

extent that the sensor specifications permit, with the in-

troduction of a new sensor type, products associated with

the previous sensors should be continued. The SeaWiFS

system, product format, or data delivery mechanisms may
need to evolve to become and remain compliant with EOS

standards as these become better defined with the imple-
mentation of EOSDIS.

[1_] Recommendation: Consistency should be sustained
between the various sensor data sets as they move

from one data processing and delivery system to
another.

In the next few years, ocean color data from foreign

partners will become increasingly important. However, the
mechanism for data transfer, criteria for timeliness and

formats, and other requirements, have not been defined.

With the need to integrate both sensor and in situ data

sets, NASA must develop effective working relationships
with its international partners to obtain maximum scien-
tific return at minimum cost. These relationships should

be established at the investigator level with the support of
NASA.

[_ Recommendation: SeaWiFS and OCTS should act
as a testbed for such exchanges between interna-

tional partners. Although the primary focus may be

at the investigator level, NASA may need to sup-

port efforts on data policies, data exchange, and
satellite downlinks.

5.4 Convergence

Each of the planned ocean color missions, while similar

in their basic observing capabilities, is being designed with

unique engineering and scientific requirements as well as
limitations. While calibration information and data access

will help develop a consistent, ocean color time series, the
international science community must use this opportunity

to design a comprehensive ocean color observing system.
Such a system must measure the critical processes at the

appropriate scales. At present, the basic phytoplankton

pigment measurement is understood, but not all of the

critical processes, or their scales of variability, are known

in order to design an effective measurement system.

[1_] Recommendation: NASA should coordinate re-

search activities with the other sponsoring agencies
to develop the observing and sampling requirements

for an ocean color system that will make the essen-
tial measurements for ocean monitoring and predic-

tion.

While a baseline set of SeaWiFS products will be avail-
able from EOSDIS, there is currently no defined set of

LAC (1 km) products. An effort needs to be coordinated
to define such high spatial resolution products and for-

mats which are required by coastal resource managers and

other operational users. These plans must be implemented
to make full use of SeaWiFS for coastal management.

[_ Recommendation: An interagency effort needs to be

implemented to define new products for the coastal

zone and to collect, process, and distribute the LAC
data.

Coupled physical and biological models must be devel-

oped in concert with the observing systems. Too often,
data sets and models are produced in isolation without
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regard to the needs and limitations of the other. The OCTS

strengths and weaknesses of both models and data must be OSC

evaluated so that scientists can develop useful predictive PM-1

models of the ocean system. These studies must not focus

solely on ocean color data, but on the full suite of physical POC

and biological measurements that can be made from space. SBRC

Recommendation: NASA must support efforts to SeaWiFS

link ocean models with both physical and biologi- SNR

cal data and ensure that lessons learned from both SST

modeling and data analysis are used in the design UV

of ocean color observing systems.

ACRIM

ADEOS

AM-1

AVHRR

AXBT

CDOM

CENR

CSIRO

CZCS

DAAC

DMS

DOC

DOM

EEZ

ENSO

ENVISAT

EOS

EOSDIS

ESA

GAC

GLI

GLOBEC

GSFC

HIRIS

IR

JGOFS

JPL

LAC

LANDSAT

LOICZ

MERIS

MODIS

MODIS-N

MODIS-T

MOU

NASA

NASDA

NOAA

NRA

NSCAT

NSF

GLOSSARY

Active Cavity Radiometer Irradiance Monitor

Advanced Earth Observing Satellite

Not an acronym, used to designate the morning

platform of EOS

Advanced Very High Resolution Radiometer

Airborne Expendable Bathythermograph

Colored Dissolved Organic Matter
Committee on Environment and Natural Resources

Commonwealth Scientificand IndustrialResearch

Organization (of Australia)
Coastal Zone Color Scanner

Distributed Active Archive Center

dimethyl sulfide

dissolved organic carbon

dissolved organic matter

Exclusive Economic Zone

E1 Nifio Southern Oscillation

Environmental Satellite

Earth Observing System

EOS Data and Information System

European Space Agency

Global Area Coverage

Global Imager

Global Ocean Ecosystems dynamics

Goddard Space Flight Sensor

High Resolution Imaging Spectrometer

Infrared

Joint Global Ocean Flux Study

Jet Propulsion Laboratory

Local Area Coverage

Land Resources Satellite

Land Ocean Interaction in the Coastal Zone

Medium Resolution Imaging Spectrometer

Moderate Resolution Imaging Spectrometer

Nadir-viewing MODIS instrument

Tilted MODIS instrument to minimize sun glint

Memorandum of Understanding

National Aeronautics and Space Administration

National Space Development Agency of Japan

National Oceanic and Atmospheric Administration

NASA Research Announcement

NASA Scatterometer

National Science Foundation

Ocean Color Temperature Sensor

Orbital Sciences Corporation

Not an acronym, used to designate the afternoon

platform of EOS

Particulate Organic Carbon

Santa Barbara Research Center

Sea-viewing Wide Field-of-view Sensor

Signal-to-Noise Ratio

Sea Surface Temperature

Ultraviolet

V0 Version 0

SYMBOLS

E_ Reflectance.

Lw Water-leaving radiance.

LwN(A) Normalized water-leaving radiance.
Rr_ Reflectance

A Wavelength
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